Abstract

Due to high biocompatibility, miniaturization, optical transparency and low production cost together with high radiation hardness the diamond-based sensors are considered promising for radiation medicine and biomedicine in general. Here we present detection of fibroblast cell culture properties by nanocrystalline diamond solution-gated field-effect transistors (SG-FET), including effects of gamma irradiation. We show that blank nanocrystalline diamond field-effect biosensors are stable at least up to 300 Gy of γ irradiation. On the other hand, gate current of the diamond SG-FET biosensors with fibroblastic cells increases exponentially over an order of magnitude with increasing radiation dose. Extracellular matrix (ECM) formation is also detected and analyzed by correlation of electronic sensor data with optical, atomic force, fluorescence, and scanning electron microscopies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.