Abstract

The actions of gamma-hydroxybutyrate, a drug known to lead to an increase in nocturnal slow wave sleep and induce epileptic states following systemic application, on the membrane properties of thalamocortical neurons from brain slices of the rat and cat dorsal lateral geniculate nucleus were studied using sharp electrode intracellular recordings. Gamma-hydroxybutyrate applied by addition to the perfusion medium led to a concentration-dependent and reversible hyperpolarization of the membrane potential accompanied by a decrease in apparent input resistance (0.1 mM: 2.3 +/- 0.3 mV, 9.5 +/- 1.0%; 10 mM: 11.3 +/- 1.3 mV, 37.5 +/- 10.8%, respectively). In six of seven neurons the iontophoretic or bath (0.1-0.2 mM) application of low concentrations of gamma-hydroxybutyrate led to a hyperpolarization accompanied by the appearance of low-frequency (< 4 Hz) membrane potential oscillations crowned by bursts of action potentials, when the membrane potential of these neurons was initially set depolarized to the range where ongoing oscillatory activity occurred. The gamma-hydroxybutyrate-elicited hyperpolarization was reversibly antagonized by the co-application of the GABAB receptor antagonist CGP 35348 (0.4-1 mM), but was not affected by the putative gamma-hydroxybutyrate receptor antagonist NCS 382 (0.1-5 mM) or tetrodotoxin (1 microM), suggesting that gamma-hydroxybutyrate tonically activates postsynaptic GABAB receptors. The gamma-hydroxybutyrate-induced promotion of oscillatory activity and action potential burst firing of thalamocortical neurons may be one mechanism by which gamma-hydroxybutyrate leads to an increase in the deep stages of sleep and the generation of electroencephalogram and behavioural patterns typical of absence epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.