Abstract

Nowadays, the microgrid cluster is an important application scenario for energy trading. In trading, one of the most important research directions is the issue of pricing. To determine reasonable pricing for the microgrid cluster, data communication is used to create the cyber-physical system (CPS), which can improve the observability of microgrids. Then, the following works are carried out in the CPS. In the physical layer: 1) Regarding trading between microgrids and the load, based on the generalized game theory, an optimal pricing strategy is proposed, which takes into account the interactive relationships among microgrids and transforms the pricing problem into a Nikaido-Isoda function to obtain the optimal prices conveniently; 2) Regarding peer-to-peer trading between two microgrids, based on evolutionary game theory and the penalty mechanism, the optimal sale price of the seller is selected with boundary rationality. In the cyber layer, regarding the communication interruption issue existing in pricing (i.e., the game process), based on the principle of matching the performance of the path with the importance degree of the data, a dynamic regulating method of paths is proposed, i.e., adopting a new path to re-transmit the interrupted data to the destination. Finally, the effect of the proposed strategies is verified by case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.