Abstract

Polycrystalline copper (I) oxide films were deposited on stainless steel substrate by galvanostatic electrodeposition method and were characterized by X-ray diffraction and scanning electron microscopy. The effect of bath temperature, bath pH and current density on the compositon, grain size, surface texture and surface morphology of the electrodeposited films were investigated. The films deposited at low bath pH (≤7) consisted of copper (I) oxide and metallic copper; while the films deposited at bath pH between 8 and 12 and bath temperature of 60°C were pure copper (I) oxide. The preferred orientation of the copper (I) oxide films depended on the relative growth rate of {111} and {200} faces and could be controlled by adjusting the bath pH and/or the cathodic current density. (100)-oriented copper (I) oxide films could be deposited at pH=9 and current densities in the range of 0.25–1 mA/cm2, while (111)-oriented films could be prepared at pH=12 or at pH=9 using the current densities between 1.5–2.5 mA/cm2. Computer simulated crystallite shapes showed that the crystal shape changed from octahedral for (100)-oriented film to trucated pyramids and cubs for (111)- oriented film. And they were approved by scanning electron microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.