Abstract

In this paper, we examine the nonrelativistic stationary Schrodinger equation from a differential Galois-theoretic perspective. The main algorithmic tools are pullbacks of second-order ordinary linear differential operators, so as to achieve rational function coefficients (“algebrization”), and Kovacic's algorithm for solving the resulting equations. In particular, we use this Galoisian approach to analyze Darboux transformations, Crum iterations and supersymmetric quantum mechanics. We obtain the ground states, eigenvalues, eigenfunctions, eigenstates and differential Galois groups of a large class of Schrodinger equations, e.g. those with exactly solvable and shape invariant potentials (the terms are defined within). Finally, we introduce a method for determining when exact solvability is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.