Abstract
We have examined the effects on core characteristics of using two different types of Pu-based metallic alloy fuels in the gallium-cooled fast reactor core. In the proposed concept, the liquid metal fast nuclear reactor uses metallic fuel in the liquid phase and gallium coolant at high temperature (inlet 1700K, outlet 1900K). The liquid fuel is continuously supplied to the reactor during operation at full reactor power. The reactor power is controlled by rotational control drums with absorber material. The aim was to evaluate reactor core neutronics and safety characteristics demonstrating a feasibility of the reactor system. Although gallium has large absorption cross section in the high neutron energy region, we can design the core with rather good neutronics performances. The large negative reactivity feedback induced by the thermal expansion of liquid metallic fuel ensures the core's inherent safety against the unprotected loss-of-flow transient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.