We use GALEX/optical photometry to construct color-color relationships for early-type galaxies sorted by morphological type. We have matched objects in the GALEX GR1 public release and the first IR1.1 internal release, with the RC3 early-type galaxies having a morphological type -5.5<T<-1.5 with mean error in T<1.5, and mean error on (B-V)T<0.05. After visual inspection of each match, we are left with 130 galaxies with a reliable GALEX pipeline photometry in the far-UV and near-UV bands. This sample is divided into Ellipticals (-5.5<T<-3.5) and Lenticulars (-3.5<T<-1.5). After correction for the Galactic extinction, the color-color diagrams FUV-NUV vs. (B-V)_{Tc} are plotted for the two subsamples. We find a tight anti-correlation between the FUV-NUV and (B-V)_{Tc} colors for Ellipticals, the UV color getting bluer when the (B-V)_{Tc} get redder. This relationship very likely is an extension of the color-metallicity relationship into the GALEX NUV band. We suspect that the main source of the correlation is metal line blanketing in the NUV band. The FUV-NUV vs B-V correlation has larger scatter for lenticular galaxies; we speculate this reflects the presence of low level star formation. If the latter objects (i.e. those that are blue both in FUV-NUV and B-V) are interpreted as harboring recent star formation activity, this would be the case for a few percent (~4%) of Ellipticals and ~15% of Lenticulars; this would make about 10% of early-type galaxies with residual star formation in our full sample of 130 early-type galaxies. We also plot FUV-NUV vs. the Mg_2 index and central velocity dispersion. We find a tight anti-correlation between FUV-NUV and the Mg_2 index(...).

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call