Abstract

This paper describes the collocation and Galerkin’s approaches for fractional integro-differential equations (FIDEs). We explain the application of Jacobi polynomials to solve the FIDEs which convert the problem into a system of algebraic equations. To approximate the solution of FIDEs by Jacobi polynomials, a suitable variable transformation is applied which assures that the solution of the transformed FIDEs is sufficiently smooth. This results in a rapid convergence of both the methods with Jacobi polynomials even when the solution is not smooth. The error estimate and convergence analysis for presented numerical methods are provided. To perform the numerical simulations, two test examples (linear and nonlinear) are considered with non-smooth solutions, and numerical results are presented. Further, the comparative study of the presented schemes with some existing numerical schemes is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.