Abstract

Context. Faint, star-forming galaxies are likely to play a dominant role in cosmic reionisation. Great strides have been made in recent years to characterise these populations at high redshifts (z > 3). Now, for the first time, with JWST photometry beyond 1 μm in the rest frame, we can derive accurate stellar masses and position these galaxies on the galaxy main sequence. Aims. We seek to assess the place of 96 individual Lyman-α emitters (LAEs) selected behind the A2744 lensing cluster with MUSE IFU spectroscopy on the galaxy main sequence. We also compare the derived stellar masses to Lyman-α luminosities and equivalent widths to better quantify the relationship between the Lyman-α emission and the host galaxy. Methods. These 96 LAEs lie in the redshift range of 2.9 < z < 6.7, with their range of masses extending down to 106 M⊙ (over half with M⋆ < 108 M⊙). We used the JWST/NIRCam and HST photometric catalogues from the UNCOVER project, giving us excellent wavelength coverage from 450 nm to 4.5 μm. We also performed an SED fitting using CIGALE, fixing the redshift of the LAEs to the secure, spectroscopic value. This combination of photometric coverage with spectroscopic redshifts allows us to robustly derive stellar masses for these galaxies. Results. We found a main sequence relation for these low-mass LAEs of log SFR = (0.88 ± 0.07 − 0.030 ± 0.027 × t) log M⋆ − (6.31 ± 0.41 − 0.08 ± 0.37 × t). This is in relative agreement with the best-fit results of prior collated studies; however, here we see a steeper slope and a higher normalisation. This indicates that low-mass LAEs towards the epoch of reionisation lie above the typical literature main sequence relations derived at lower redshift and higher masses. In addition, by comparing our results to UV-selected samples, we can see that while low-mass LAEs lie above these typical main sequence relations, they are likely not singular in this respect at these particular masses and redshifts. While low-mass galaxies have been shown to play a significant role in cosmic reionisation, our results point to the likelihood that LAEs hold no special position in this regard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.