Abstract
To maintain steady and level walking, push-off propulsion during the double support phase compensates for the energy loss through heel strike collisions in an energetically optimal manner. However, a large portion of daily gait activities also contains transient gait responses, such as acceleration or deceleration, during which the observed dominance of the push-off work or the energy optimality may not hold. In this study, we examined whether the push-off propulsion during the double support phase served as a major energy source for gait acceleration, and we also studied the energetic optimality of accelerated gait using a simple bipedal walking model. Seven healthy young subjects participated in the over-ground walking experiments. The subjects walked at four different constant gait speeds ranging from a self-selected speed to a maximum gait speed, and then they accelerated their gait from zero to the maximum gait speed using a self-selected acceleration ratio. We measured the ground reaction force (GRF) of three consecutive steps and the corresponding leg configuration using force platforms and an optical marker system, respectively, and we compared the mechanical work performed by the GRF during each single and double support phase. In contrast to the model prediction of an increase in the push-off propulsion that is proportional to the acceleration and minimizes the mechanical energy cost, the push-off propulsion was slightly increased, and a significant increase in the mechanical work during the single support phase was observed. The results suggest that gait acceleration occurs while accommodating a feasible push-off propulsion constraint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.