Abstract

This study evaluated brain activity during unaccustomed treadmill walking using positron emission tomography (PET) and [18F]fluorodeoxyglucose. Twenty-four healthy elderly females (75–82years) participated in this study. Two PET scans were performed after 25min of rest and after walking for 25min at 2.0km/h on a treadmill. Participants were divided into low and high step-length variability groups according to the median coefficient of variation in step length during treadmill walking. We compared the regional changes in brain glucose metabolism between the two groups. The most prominent relative activations during treadmill walking compared to rest in both groups were found in the primary sensorimotor areas, occipital lobe, and anterior and posterior lobe of the cerebellum. The high step-length variability group showed significant relative deactivations in the frontal lobe and the inferior temporal gyrus during treadmill walking. There was a significant relative activation of the primary sensorimotor area in the low step-length variability group compared to the high step-length variability group (P=0.022). Compared to the low step-length variability group, the high step-length variability group exhibited a greater relative deactivation in the white matter of the middle and superior temporal gyrus (P=0.032) and hippocampus (P=0.034) during treadmill walking compared to resting. These results suggest that activation of the primary sensorimotor area, prefrontal area, and temporal lobe, especially the hippocampus, is associated with gait adaptability during unaccustomed treadmill walking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.