Abstract

A novel systematic technique for gain-scheduled control based on fixed-structure synthesis is adopted to design the aerial vehicle autopilot. The gain-scheduled design can be transformed into the multi-model control problem with both controller architecture and gain-scheduled architecture defined a priori. Hidden coupling terms naturally arise in the linearized dynamics of the gain-scheduled controller when some of the state variables are also used as scheduling variables. Unlike traditional approaches that do not consider these terms, the proposed method takes the hidden coupling terms directly into account in the synthesis phase. Finally, numerical simulations are carried out to evaluate the effectiveness of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.