Abstract

Plutonic rocks such as gabbros provide information on magmatic and tectonic processes which occur beneath a mid-ocean rift axis as well as on the formation of the oceanic crust. Igneous rocks, reported from the Red Sea Rift valley, have been limited to extrusive basalts so far. The only deeper crustal rocks found in the Red Sea area are from the rift flanks and are interpreted as late-stage continental rift magmatism. Here, we present the geochemistry of the first recovered gabbro fragments from the axis of the Red Sea Rift, sampled from a crater structure within the brine-filled Discovery Deep at the axis of the Red Sea Rift. Petrology and geochemistry show characteristics of a typical mid-ocean ridge gabbro formed at shallow crystallization depth. Clinopyroxene core mineral data fall within two groups, thus pointing to a multiphased magmatic history, including different magma batches and a joint late-stage fractional crystallization. Geobarometry, based on clinopyroxene cores, suggests lower crystallization pressures than similar geobarometric data reported for gabbroic samples from Zabargad (8–9 kbar) and Brother’s Islands (2.5–3.5 kbar) at the rift flanks. However, based on the evolved whole rock composition, its multiphase history, the thickness of the crust, the current location of the samples, and the uncertainties in the barometer, geobarometric estimates for the samples are likely overestimated. Instead, we propose that these rock fragments originate from the upper part of a fully developed oceanic crust in the central Red Sea Rift. High-resolution bathymetry and sparker seismic data reveal that the Discovery Deep is characterized by a significant normal fault and a strong reflector near the rift axis, which we interpret as a potential sill intrusion in an approximate depth of 400 m. Based on the lack of progressive alteration and the sampling location within a sediment-free crater structure, we interpret that the emplacement of the gabbros has to be geologically recent. We interpret the gabbro either as a xenolith transported by the eruptive volcanism that formed the crater, potentially related to the sill intrusion visible at depth, or as intrusive gabbro, which was uplifted and deposited in a talus fan by the adjacent normal fault, exposed by the formation of the volcanic crater.

Highlights

  • As a main part of the plutonic oceanic crust, gabbros provide essential information about deep crustal processes

  • No other deeper crustal rocks have been found so close to the rift axis before, despite its slow-spreading character, which was earlier attributed to higher volcanic activity related to the Afar plume (Augustin et al, 2016b)

  • The first gabbroic rock fragments have been recovered from the Discovery Deep at the Red Sea Rift axis

Read more

Summary

Introduction

As a main part of the plutonic oceanic crust, gabbros provide essential information about deep crustal processes. Slow- and ultraslow-spreading ridges are key environments to study gabbroic rocks, which hold the potential to help understanding the depth, thermal history, and size of magma reservoirs, as well as to constrain models of basalt differentiation and oceanic crust formation (Meyer et al, 1989). The geochemistry of these rocks provides essential information about the magmatic processes that occur at the base of the oceanic crust near mid-ocean ridges. They are interpreted as evidence of the existence of magma reservoirs beneath mid-ocean ridges and contribute to the understanding of crystallization, fractionation, and melt-crystal reaction processes following decompressional mantle melting (Lissenberg and Dick, 2008)

Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.