Abstract
Steroid feedback regulates GnRH secretion and previous work has implicated gamma-aminobutyric acid (GABA)ergic neurons as a mediator of these effects. We examined GABAergic postsynaptic currents (PSCs) in green fluorescent protein-identified GnRH neurons from mice exposed to different steroid milieus in vivo. Adult mice were ovariectomized and treated with estradiol (OVX+E, controls) or E plus progesterone (P, OVX+E+P). P decreased PSC frequency, a presynaptic effect, and PSC size, which could be via pre- and/or postsynaptic mechanisms. In contrast, dihydrotestosterone (DHT, OVX+E+DHT) increased both GABAergic PSC frequency and size in GnRH neurons. Tetrodotoxin (TTX), which eliminates action-potential-dependent presynaptic effects, did not alter frequency, suggesting DHT may have increased PSC frequency by increasing connectivity between GABAergic and GnRH neurons. TTX reduced PSC size below control values, indicating DHT may augment presynaptic GABA release but inhibits the postsynaptic GnRH neuron response. In mice treated with both P and DHT (OVX+E+P+DHT), PSC frequency and size were similar to controls, suggesting these steroids counteract one another. These results demonstrate GABAergic neurons participate in integrating and conveying steroid feedback to GnRH neurons, defining a potential central mechanism for steroid regulation of GnRH neurons during the reproductive cycle, and providing one possible mechanism for increased activity of these cells in hyperandrogenic females.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.