Abstract

Oxidative stress has been implicated in Alzheimer's disease (AD) as a common pathway underlying neuronal damage causing huge impacts on cognitive functions in the AD process. Reduction and remodeling of γ-aminobutyric acid (GABA) signaling in AD may promote neuronal survival by regulating PI3K/Akt axis. Moreover, its activation exerts beneficial effects on AD by alleviating the neuronal oxidative stress injury. Considering these facts, we hypothesized the GABAB receptor as a novel therapeutic target for AD. To evaluate this hypothesis, a rat AD model was established by intraperitoneal injection of the GABAB receptor agonist (baclofen), PI3K/Akt signaling pathway agonist (740 Y-P), and antagonist (LY294002), respectively. The effects of GABAB activation on spatial memory and learning ability in the AD rats were measured by Morris water maze. Whereas the effects of GABAB and PI3K/Akt signaling pathway on apoptosis and oxidative stress injury were determined in vivo and in vitro using primary neuronal cultures. We found that GABAB receptor activation restored spatial memory and learning ability of AD rats and suppressed the neuronal apoptosis and hippocampal atrophy by activating the PI3K/Akt signaling pathway. Additionally, GABAB receptor activation reduced the oxidative stress injury by lowering the MDA levels and increased the SOD, GSH-Px, and CAT levels via activation of the PI3K/Akt signaling pathway. Taken together, our results suggest that GABAB receptor activation repressed the oxidative stress injury implicated in neurons in AD rats via PI3K/Akt signaling pathway activation which may suggest a potential new therapeutic target for AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.