Abstract

Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.

Highlights

  • The vertebrate retina contains two types of neuron-supporting macroglial cells, astrocytes and Müller cells

  • This review gives a survey of the present knowledge regarding the involvement of Müller cells in the uptake and metabolism of glutamate and γ-aminobutyric acid (GABA) and glutamate, the relationships between the glial transmitter recycling and the various other functional roles of Müller cells, and the contribution of Müller cell’s transmitter recycling to the neuroprotective and detrimental effects of gliosis

  • Chick and human Müller cells express P2X7; activation of this receptor, e.g., by ATP released from Müller cells (Newman, 2003; Reichenbach and Bringmann, 2013), causes membrane depolarization which impairs the uptake of glutamate (Figure 4C) (Pannicke et al, 2000; Anccasi et al, 2013)

Read more

Summary

Introduction

The vertebrate retina contains two types of neuron-supporting macroglial cells, astrocytes and Müller cells. Importance of glial glutamate uptake In the neural retina, photoreceptors, neurons, and macroglial cells express high-affinity glutamate transporters (GLT) (Rauen and Wiessner, 2000).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.