Abstract

1. Intracellular sharp electrode and whole-cell patch-clamp recording from characterized paraventricular nucleus (PVN) neurones in rat hypothalamic slices were used to study the synaptic mechanism and associated neurotransmitters that mediate their response to suprachiasmatic nucleus (SCN) stimulation. 2. Electrical stimulation restricted to SCN evoked short-latency inhibitory postsynaptic potentials (IPSPs) or combinations of IPSPs and excitatory postsynaptic potentials (EPSPs) in all (n = 59) PVN neurones tested. Type I neurones (n = 18) were magnocellular and a majority (13/18) demonstrated monosynaptic IPSPs that reversed polarity at the chloride equilibrium potential and were sensitive to bicuculline. 3. Type II (n = 10) and III parvocellular (n = 13), and unclassifiable neurones (n = 18) displayed combinations of IPSPs and EPSPs following similar stimuli applied to SCN. IPSP blockade with bicuculline uncovered SCN-evoked monosynaptic dual-component EPSPs that were sensitive to N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists. In addition, chemical microstimulation within SCN was associated with transient increases in spontaneous EPSPs recorded from these PVN neurones. 4. These data imply that the amino acids GABA and glutamate are important mediators of fast monosynaptic transmission from SCN to defined neurones in PVN, and are candidates for conveying circadian rhythmicity to PVN regulation of neuroendocrine and autonomic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.