Abstract

The possibility of using lateral Ga(In)AsP nanostructures grown by the catalytic method in a quasi-closed volume from phosphorus and indium vapors on the GaAs (100) surface as an antireflection coating for photovoltaic devices is considered for the first time. It is shown that, at a fixed growth temperature, it is possible to control the surface morphology by changing the growth duration. The surface morphology is examined by scanning electron and atomic force microscopies. It is shown that the antireflection properties of the surface in the range 400–800 nm are related to its structure. The use of such a coating in GaAs-based photocells demonstrated a significant increase in the external quantum yield of photovoltaic converters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.