Abstract

Data traffic demands continue to increase worldwide, driving requirements for higher spectral efficiency systems and higher individual channel capacities. To enable terrestrial transmission systems to keep up with demand, the ITU recently adopted the G.654.E standard for optical fiber with larger effective area for terrestrial use. To keep macrobend loss performance the same as for conventional G.652 fiber, the cable cutoff wavelength specification for the new fiber class was increased to the lower edge of the C-band. We examine here several aspects of G.654.E fiber in terrestrial systems including modeled and experimentally measured transmission reach, the use of Raman amplification with pump wavelengths below cable cutoff, and the transmission of optical supervisory channels (OSC) at wavelengths below cable cutoff. We demonstrate significant transmission reach increases for 200 Gb/s PM-16QAM channels of at least 55% compared to standard single-mode fiber in a re-circulating loop experimental configuration. Addressing the practical questions of OSC and Raman pumps propagating below cable cutoff, we demonstrate experimentally and through extensive modeling that negligible impact is expected and observed in both cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.