Abstract

G-quadruplex formation in virally encoded templates arrests reverse transcription. Methods to stabilize this structure are promising for antiviral approaches. To stabilize G-quadruplex formation, deoxythymidines were modified with tetra(ethylene glycol) (TEG). The TEG-modified G-quadruplexes were stabilized significantly relative to unmodified DNA. In the presence of a TEG-modified oligonucleotide that is capable of forming an intermolecular G-quadruplex with a template containing a hu- man immunodeficiency virus-1 sequence, reverse transcription was inhibited by more than 70 % relative to the reaction in the absence of the TEG-modified oligonucleotide. Moreover, the TEG-modified deoxythymidines protected the DNA oligonucleotide from degradation by various nucleases in human serum. Thus, DNA oligonucleotides modified with TEG have potential in therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.