Abstract
Accurate path tracking and stability are the main challenges of lateral motion control in mobile robots, especially under the situation with complex road conditions. The interaction force between robots and the external environment may cause interference, which should be considered to guarantee its path tracking performance in dynamic and uncertain environments. In this article, a flexible lateral control scheme is considered for the developed wheel-legged robot, which consists of a cubature Kalman algorithm to evaluate the centroid slip angle and the yaw rate. Furthermore, a fuzzy compensation and preview angle-enhanced sliding model controller to improve the tracking accuracy and robustness. Finally, some simulations and experimental demonstrations using the four-wheel-legged robot (BIT-NAZA) are carried out to illustrate the effectiveness and robustness, and the proposed method has achieved satisfactory results in high-precision trajectory tracking and stability control of the mobile robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.