Abstract

In this study, a fuzzy-stochastic-based violation analysis (FSVA) approach is developed for the planning of water resources management systems with uncertain information, based on a multistage fuzzy-stochastic integer programming (FSIP) model. In FSVA, a number of violation variables for the objective and constraints are allowed, such that in-depth analyses of tradeoffs among economic objective, satisfaction degree, and constraint-violation risk can be facilitated. Besides, the developed method can deal with uncertainties expressed as probability distributions and fuzzy sets; it can also reflect the dynamics in terms of decisions for water-allocation and surplus-flow diversion, through transactions at discrete points of a complete scenario set over a multistage context. The developed FSVA method is applied to a case study of water resources management within a multi-stream, multi-reservoir and multi-period context. The results indicate that the satisfaction degrees and system benefits would be different under varied violation levels; moreover, different violation levels can also lead to changed water-allocation and surplus-flow diversion plans. Violation analyses are also conducted to demonstrate that violating different constraints have different effects on system benefit and satisfaction degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.