Abstract
The first stage of knowledge acquisition and reduction of complexity concerning a group of entities is to partition or divide the entities into groups or clusters based on their attributes or characteristics. Clustering algorithms normally require both a method of measuring proximity between patterns and prototypes and a method for aggregating patterns. However sometimes feature vectors or patterns may not be available for objects and only the proximities between the objects are known. Even if feature vectors are available some of the features may not be numeric and it may not be possible to find a satisfactory method of aggregating patterns for the purpose of determining prototypes. Clustering of objects however can be performed on the basis of data describing the objects in terms of feature vectors or on the basis of relational data. The relational data is in terms of proximities between objects. Clustering of objects on the basis of relational data rather than individual object data is called relational clustering. The premise of this paper is that the proximities between the membership vectors, which are obtained as the objective of clustering, should be proportional to the proximities between the objects. The values of the components of the membership vector corresponding to an object are the membership degrees of the object in the various clusters. The membership vector is just a type of feature vector. Based on this premise, this paper describes another fuzzy relational clustering method for finding a fuzzy membership matrix. The method involves solving a rather challenging optimization problem, since the objective function has many local minima. This makes the use of a global optimization method such as particle swarm optimization (PSO) attractive for determining the membership matrix for the clustering. To minimize computational effort, a Bayesian stopping criterion is used in combination with a multi-start strategy for the PSO. Other relational clustering methods generally find local optimum of their objective function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.