Abstract

Abstract One of the most critical factors affecting boiler efficiency and hazardous-gas-emission reduction is the volume of excess air mixed with fuel. A knowledge-based approach is proposed to model the efficiency of a 320-MW natural-gas-fired steam power plant in Isfahan, Iran by applying fuzzy-modelling techniques to control the boiler efficiency. This model is based on fuel and air entering the boiler. First, the fuzzy-model structure is identified by applying the fuzzy rules obtained from an experienced human operator. The proposed method is then optimized using a genetic algorithm to increase the fuzzy-model accuracy. The results indicate that, by applying a genetic algorithm, the precision of the proposed fuzzy model increases. The error between the actual efficiency of the plant and the output efficiency of the proposed model is low. This model is developed by applying the fuzzy rules and modelling-related calculations. Finally, to optimize the efficiency of the boiler, a fuzzy proportional-integral controller is designed. The closed-loop control simulations are run by applying both the proposed controller and the manual controller to demonstrate the influence of the suggested method. The simulation outcomes indicate that the recommended controller adjusts the excess-air percentage correctly and increases the unit efficiency by 0.70%, significantly reducing fuel consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.