Abstract

In large buildings, effective load shedding and shifting and providing the maximum power through solar renewable sources remain challenges because of users’ unpredictable load consumption. Conventionally, load shifting, load shedding, and load covering are majorly dependent on user inputs. The lack of user interest in participating in demand responses for effective load shifting and covering remains a problem. Effective load covering through renewables and user-friendly load shedding and shifting with maximized user participation are challenging and demand high-resolution user load consumption information, which are not possible without sophisticated communication and digital twins. In this research work, a novel fuzzy-logic-based cascaded decentralized load-controlling mechanism has been developed that manages the residential building load through load-shifting, load-covering, and load-shedding schemes without any communication protocols and digitization between residential units. The decentralized controller aims to effectively utilize the centralized resources of power generation with the effective automated participation of users. The quantification of the load shifting, covering, and shedding performed during peak hours was well covered under the load-covering scheme, and the results showed that flexibility capacities of 1617 kW were achieved for load covering, 294 kW for load shedding, and 166.34 kW through shifting. A total load of 60 kW, which was reduced during shedding and shifting, was well covered during load covering through renewables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.