Abstract

This research work focuses on precision turning of Ti6Al4V material to investigate the machinability of the material. Precision turning is a type of machining where, very low feed rate and depth of cut is being used to machine using a cutting insert with a lower nose radius. The cutting parameters considered for the experiments include the cutting speed, feed rate, depth of cut and nose radius. PVD coated carbide cutting inserts with different nose radius and constant rake and clearance angle are being considered for experimentation. The experimentation was designed based on Taguchi's L 27 orthogonal array. Three different levels of cutting parameters were being considered for the experimentation. The turning experiments were carried out on a conventional variable speed motor lathe under dry working conditions. Based upon the experimental values, Analysis of Variance (ANOVA) was conducted to understand the influence of various cutting parameters on cutting force, surface roughness and cutting tool temperatures during precision turning. There are a number of techniques available for predicting responses using input parameters and the present work uses Fuzzy Inference System (Mamdani Fuzzy logic) to predict the out put parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.