Abstract

dditive manufacturing (AM) is an effective technology for repairing and restoring automotive components. However, the effectiveness of additive manufacturing technology in repair and restoration is highly influenced by several factors related to components and process. The objective of this paper is to improve the decision-making in repair and restoration of a turbocharger with AM. In this article, a Fuzzy-Genetic approach was presented as a decision-making tool for repairing a remanufacturable component. Fuzzy logic (FL) is deployed as the method to model the design parameters of a turbocharger, such as design complexity, failure mode, damage size, disassembleability, preprocessing, temperature, durability, pressure ratio and mass flow rate to model the relationship between the inputs and outputs using Mamdani model with their membership functions. Genetic algorithm optimization method was used to optimize the cost of the repairing process once the decision on whether the turbocharger was repairable was determined by the Fuzzy system. The FL approach applied rules affecting the process, the robustness and accuracy of the model increases with a higher number of rules. The work focuses on the dataset related to design information, which represents as a knowledge base for decision parameters on design optimization to automate repair process during remanufacturing. The results showed the effects of the design parameters on repairing and replacement decisions, and how the fuzzy model related the inputs to the outputs based on the generated rules. In conclusion, FGA method can be used to improve the repair and restoration process of a turbocharger through AM technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.