Abstract
This paper deals with the problem of fault-tolerant control for a class of perturbed nonlinear systems with nonlinear non-affine actuator faults. Fuzzy systems are integrated into the design of the control law to get rid of the system nonlinearities and the considered actuator faults. Two adaptive controllers are proposed in order to reach the control objective and ensure stability. The first term is an adaptive controller involved to mollify the system uncertainties and the considered actuator faults. Therefore, the second term is known as a robust controller introduced for the purpose of dealing with approximation errors and exogenous disturbances. In general, the designed controller allows to deal automatically with the exogenous disturbances and actuator faults with the help of an online adaption protocol. A Butterworth low-pass filter is utilized to avoid the algebraic loop issue and allows a reliable approximation of the ideal control law. A stability study is performed based on Lyapunov's theory. Two inverted pendulum example is carried out to prove the accuracy of the controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robotics and Control Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.