Abstract
The performance of a fuzzy controlled backpropagation neural network has been studied to predict the tool wear in a face milling process based on simple process parameters and sensor signal features. The results show the potentiality of the method in comparison to the standard backpropagation neural network and one of its variants. The speed of convergence, accuracy of prediction and total time of system development make fuzzy controlled backpropagation an attractive technique amenable for online tool condition monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.