Abstract
Despite abundant growth in automatic emotion recognition system (ERS) studies using various techniques in feature extractions and classifiers, scarce sources found to improve the system via pre-processing techniques. This paper proposed a smart pre-processing stage using fuzzy logic inference system (FIS) based on Mamdani engine and simple time-based features i.e. zero-crossing rate (ZCR) and short-time energy (STE) to initially identify a frame as voiced (V) or unvoiced (UV). Mel-frequency cepstral coefficients (MFCC) and linear prediction coefficients (LPC) were tested with K-nearest neighbours (KNN) classifiers to evaluate the proposed FIS V-UV segmentation. We also introduced two feature fusions of MFCC and LPC with formants to obtain better performance. Experimental results of the proposed system surpassed the conventional ERS which yielded a rise in accuracy rate from 3.7% to 9.0%. The fusion of LPC and formants named as SFF LPC-fmnt indicated a promising result between 1.3% and 5.1% higher accuracy rate than its baseline features in classifying between neutral, angry, happy and sad emotions. The best accuracy rates yielded for male and female speakers were 79.1% and 79.9% respectively using SFF MFCC-fmnt fusion technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.