Abstract
Until now, no study has examined the future range dynamics of major invasive wasp species to assess their future impacts on global apiculture. Here, we developed 12 species distribution models to calibrate the future range dynamics of 12 major invasive Vespidae wasp species under a unified framework. An increase in their habitat suitability was identified in more than 75% of global land. Substantial range expansions were detected for all 12 species, and they were primarily induced by future climate changes. Notably, Polistes dominula and Vespa crabro had the largest potential ranges under all scenarios, suggesting their greater impact on global apiculture. Polistes chinensis and Vespa velutina nigrithorax had the highest range expansion ratios, so they warrant more urgent attention than the other species. Polistes versicolor and P. chinensis are expected to exhibit the largest centroid shifts, suggesting that substantial shifts in prioritizing regions against their invasions should be made. Europe and the eastern part of the USA were future invasion hotspots for all major invasive wasp species, suggesting that apiculture might face more pronounced threats in these regions than in others. In conclusion, given their substantial range shifts, invasive wasps will likely have increasingly negative impacts on global apiculture in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.