Abstract

Liquid biopsy provides minimally invasive and readily obtainable access to tumor-associated biological material in blood or other body fluids. These samples provide important insights into cancer biology, such as primary tumor heterogeneity; real-time tumor evolution; response to therapy, including immunotherapy; and mechanisms of cancer metastasis. Initial biological materials studied were circulating tumor cells and circulating nucleic acids, including circulating tumor DNA and microRNAs; more recently, studies have expanded to investigate extracellular vesicles, such as exosomes, microvesicles, and large oncosomes; tumor-derived circulating endothelial cells; and tumor-educated platelets. Even with an ongoing ambitious investment effort to develop liquid biopsy as an early cancer detection test in asymptomatic individuals, current challenges remain regarding how to access and analyze rare cells and tumor-derived nucleic acids in cancer patients. Technologies and associated bioinformatics tools are continuously evolving to capture these rare materials in an unbiased manner and to analyze them with high confidence. After first presenting recent applications of liquid biopsy, this review discusses aspects affecting the field, including tumor heterogeneity, single-cell analyses, and associated computational tools that will shape the future of liquid biopsy, with resultant opportunities and challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.