Abstract

Abstract Using plug-in electric vehicles (PEVs) has become an important component of greenhouse gas (GHG) emissions reduction strategy in the transportation sector. Assessing the net effect of PEVs on GHG emissions, however, is dependent on factors such as type and scale of electricity generation sources, adoption rate, and charging behavior. This study creates a comprehensive model that estimates the energy load and GHG emissions impacts for the years 2020 and 2030 for the city of Los Angeles. For 2020, model simulations show that the PEV charging loads will be modest with negligible effects on the overall system load profile. Contrary to previous study results, the average marginal carbon intensity is higher if PEV charging occurs during off-peak hours. These results suggest that current economic incentives to encourage off-peak charging result in greater GHG emissions. Model simulations for 2030 show that PEV charging loads increase significantly resulting in potential generation shortages. There are also significant grid operation challenges as the region׳s energy grid is required to ramp up and down rapidly to meet PEV loads. For 2030, the average marginal carbon intensity for off-peak charging becomes lower than peak charging mainly due to the removal of coal from the power generation portfolio.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call