Abstract
AbstractArctic regimes. Currently, warming accelerates the erosion of permafrost coasts and the associated discharge of sediment, carbon, and nutrients into the Arctic Ocean. However, the impacts of coastal erosion on planktonic food webs remain understudied. We aimed to (1) understand how coastal erosion impacts nearshore carbon, nutrient, and light regimes; (2) investigate the effects on primary production and energy transfer; and (3) predict how increased erosion will impact the productivity of consumers, and the overall food web interactions. We found that sediment discharge increases turbidity (darkening). This darkening is expected to hamper phytoplankton productivity, while additional carbon input will provide bacteria with direct energy sources, and shift the balance between basal autotrophic and heterotrophic production. Since the heterotrophic pathway has a lower efficiency, its dominance might negatively affect mesozooplankton. Increased Arctic coastal erosion might therefore influence planktonic food webs by changing mechanisms of energy mobilization and transfer to higher trophic levels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.