Abstract

Rapid and reliable identification of mineral species is a challenging but crucial task with promising application prospects in mineralogy, metallurgy, and geology. Spectroscopic techniques such as laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy (RS) efficiently capture the elemental composition and structural information of minerals, making them a potential tool for in situ and real-time analysis of minerals. This study introduces an integrated LIBS-RS system and the fusion of LIBS and RS spectra coupled with machine learning to classify six different types of natural mineral. In order to visualize the separability of different mineral species clearly, the spectral data were projected into low-dimensional space through t-distributed stochastic neighbor embedding (t-SNE). Additionally, the Fisher score (FS) was used to identify important variables that contribute to the data classification, and the corresponding chemical elements and molecular bonds were then interpreted. The between-minerals difference in the feature spectral intensity of LIBS and RS variables could also be observed. After the minerals spectra were pre-processed, the relationship between spectral intensity and the mineral category was modeled using machine learning methods, including partial least squares-discriminant analysis (PLS-DA) and kernel extreme learning machine (K-ELM). The results show that K-ELM and PLS-DA based on the fusion LIBS-RS data achieved the highest accuracy of 98.4%. These findings demonstrate the feasibility of the integrated LIBS-RS system combined with machine learning for the fast and reliable classification of minerals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.