Abstract
Following a recent proposal of Richard Borcherds to regard fusion as the ringlike tensor product of modules of a quantum ring, a generalization of rings and vertex algebras, we define fusion as a certain quotient of the (vector space) tensor product of representations of the symmetry algebra [Formula: see text]. We prove that this tensor product is associative and symmetric up to equivalence. We also determine explicitly the action of [Formula: see text] on it, under which the central extension is preserved. Having defined fusion in this way, determining the fusion rules is then the algebraic problem of decomposing the tensor product into irreducible representations. We demonstrate how to solve this for the case of the WZW and the minimal models and recover thereby the well-known fusion rules. The action of the symmetry algebra on the tensor product is given in terms of a comultiplication. We calculate the R matrix of this comultiplication and find that it is triangular. This seems to shed some new light on the possible rôle of the quantum group in conformal field theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.