Abstract

Human computer interaction systems based on hand gestures catch the eye of the research community for implementing natural communication between man and machines. However, different persons perform the same gestures differently in terms of velocity and motion scale. This poses a challenging issue in minimising the variations between different persons and maximises the coherence of the same gestures. In this paper, the original pyramid histogram of gradients in three orthogonal planes combining with the dense optical flow to create dynamic descriptor is explored in to discriminate features for recognition of hand gestures. The shape and motion features of images in a video sequence are captured to obtain the geometric and illumination invariant spatio-temporal feature descriptor for classification. A multiclass support vector machine classifier is used to recognise the hand gestures. The proposed method gives an excellent recognition rate and excels the existing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.