Abstract

In the literature of neurophysiology and computer vision, global and local features have both been demonstrated to be complementary for robust face recognition and verification. In this paper, we propose an approach for face verification by fusing global and local discriminative features. In this method, global features are extracted from whole face images by Fourier transform and local features are extracted from ten different component patches by a new image representation method named Histogram of Local Phase Quantization Ordinal Measures (HOLPQOM). Experimental results on the Labeled Face in Wild (LFW) benchmark show the robustness of the proposed local descriptor, compared with other often-used descriptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.