Abstract

Additive manufacturing of carbon-fiber-reinforced polymer (CFRP) has been widely used in many fields. However, issues such as inconsistent fiber orientation distribution and void formation during the layer stacking process have hindered the further optimization of the composite material's performance. This study aimed to address these challenges by conducting a comprehensive investigation into the influence of carbon fiber content and printing parameters on the micro-morphology, thermal properties, and mechanical properties of PA6-CF composites. Additionally, a heat treatment process was proposed to enhance the interlayer bonding and tensile properties of the printed composites in the printing direction. The experimental results demonstrate that the PA6-CF25 composite achieved the highest tensile strength of 163 MPa under optimal heat treatment conditions: 120 °C for 7.5 h. This corresponds to a significant tensile strength enhancement of 406% compared to the unreinforced composites, which represents the highest reported improvement in the current field of CFRP-fused deposition 3D printing. Additionally, we have innovatively developed a single-layer monofilament CF-OD model to quantitatively analyze the influence of fiber orientation distribution on the properties of the composite material. Under specific heat treatment conditions, the sample exhibits an average orientation angle μ of 0.43 and an orientation angle variance of 8.02. The peak frequency of fiber orientation closely aligns with 0°, which corresponds to the printing direction. Finally, the study explored the lightweight applications of the composite material, showcasing the impressive specific energy absorption (SEA) value of 17,800 J/kg when implementing 3D-printed PA6-CF composites as fillers in automobile crash boxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.