Abstract
In a previous paper [1], the conventional optimal linear regulator theory was extended to accommodate the case of external input disturbances \omega(t) which are not directly measurable but which can be assumed to satisfy d^{m+1}\omega(t)/dt^{m+1} = 0 , i.e., represented as m th-degree polynomials in time t with unknown coefficients. In this way, the optimal controller u^{0}(t) was obtained as the sum of: 1) a linear combination of the state variables x_{i}, i = 1,2,...,n , plus 2) a linear combination of the first (m + 1) time integrals of certain other linear combinations of the state variables. In the present paper, the results obtained in [1] are generalized to accommodate the case of unmeasurable disturbances \omega(t) which are known only to satisfy a given \rho th-degree linear differential equation D: d^{\rho}\omega(t)/dt^{\rho} + \beta_{\rho}d^{\rho-1}\omega(t)/dt^{\rho-1}+...+\beta_{2}d\omega/dt + \beta_{1}\omega=0 where the coefficients \beta_{i}, i = 1,...,\rho , are known. By this means, a dynamical feedback controller is derived which will consistently maintain state regulation x(t) \approx 0 in the face of any and every external disturbance function \omega(t) which satisfies the given differential equation D -even steady-state periodic or unstable functions \omega(t) . An essentially different method of deriving this result, based on stabilization theory, is also described, In each cases the results are extended to the case of vector control and vector disturbance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.