Abstract

An electrochemical DNA hybridization biosensor which exploits long-range electron transfer through double-stranded DNA (ds-DNA) to a redox intercalator is described. The DNA recognition interface consisted of a mixed self-assembled monolayer of synthetic thiolated single-stranded DNA (ss-DNA) and 6-mercapto-1-hexanol (MCH). The target DNA detection is performed electrochemically through cyclic and Osteryoung square wave voltammetry, using anthraquinone derivatives as the intercalators. This biosensor has the ability to differentiate complementary target ss-DNA from non-complementary target, and most importantly, it is able to detect single-base mismatch target ss-DNA through diminution in voltammetric current. The viability of this biosensor has also been investigated through selectivity studies in the presence of interferences and the generality of the detection scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.