Abstract

Carbon-based adsorbent is considered to be one of the most promising adsorbents for CO2 capture form flue gases. In this study, a series of N-doped microporous carbon materials were synthesized from low cost and widely available urea formaldehyde resin co-polymerized with furfuralcohol. These N-doped microporous carbons showed tunable surface area in the range of 416–2273 m2 g−1 with narrow pore size distribution within less than 1 nm and a high density of the basic N functional groups (2.93–13.92 %). Compared with the carbon obtained from urea resin, the addition of furfuralcohol apparently changed the surface chemical composition and pore size distribution, especially ultramicropores as can be deduced from the X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), and pore size distribution measurements and led to remarkable improvement on CO2 adsorption capacity. At 1 atm, N-doped carbons activated at 600 °C with KOH/UFFC weight ratio of 2 (UFFA-2-600) showed the highest CO2 uptake of 3.76 and 1.57 mmol g−1 at 25 and 75 °C, respectively.

Highlights

  • Carbon dioxide as the main contributor to global warming has attracted extensive attention worldwide

  • We found that urea formaldehyde resin had good ability to produce carbon material with high CO2 capture capacity [23]

  • The structure of the sample appears to be more sensitive to the activation temperature

Read more

Summary

Introduction

Carbon dioxide as the main contributor to global warming has attracted extensive attention worldwide. Carbon capture and storage (CCS) has been a research hotspot in recent years. Among various technologies for CCS, adsorption is considered to be one of the most promising techniques in practical application due to low energy consumption and mild operating conditions compared to solvent absorption, membrane systems, and cryogenic fractionation [1]. It is possible to reach the goal of the US Department of Energy (DOE) to develop a fossil fuel conversion system capable of capturing 90 % of the produced CO2 that increases the total costs by less than 10 % [2]. High adsorption capacity, high CO2/N2 selectivity, and outstanding cycling performance are the key essentials for pressure-swing adsorption or temperature-swing adsorption technology [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.