Abstract

Despite the interest on fungi as eukaryotic model systems, the molecular mechanisms regulating the fungal non-self-recognition at a distance have not been studied so far. This paper investigates the molecular mechanisms regulating the cross-talk at a distance between two filamentous fungi, Trichoderma gamsii and Fusarium graminearum which establish a mycoparasitic interaction where T. gamsii and F. graminearum play the roles of mycoparasite and prey, respectively. In the present work, we use an integrated approach involving dual culture tests, comparative genomics and transcriptomics to investigate the fungal interaction before contact (‘sensing phase’).Dual culture tests demonstrate that growth rate of F. graminearum accelerates in presence of T. gamsii at the sensing phase. T. gamsii up-regulates the expression of a ferric reductase involved in iron acquisition, while F. graminearum up-regulates the expression of genes coding for transmembrane transporters and killer toxins. At the same time, T. gamsii decreases the level of extracellular interaction by down-regulating genes coding for hydrolytic enzymes acting on fungal cell wall (chitinases).Given the importance of fungi as eukaryotic model systems and the ever-increasing genomic resources available, the integrated approach hereby presented can be applied to other interactions to deepen the knowledge on fungal communication at a distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.