Abstract

The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has developed as an important bridge between innate immune and infection recently, and has the ability to drive proteolytic procaspase-1 into bioactive caspase-1, then responsible for proteolytic processing of inflammatory cytokines IL-1β and IL-18. Fungal β-glucan, a major component of fungal cell wall, triggers inflammatory response in multiple immune cells, but rarely described in epithelial cells. Also, the relationship between fungal β-glucan and NLRP3 inflammasome is not clear yet. In this study, we first identified that curdlan, a large particulate β-glucan, could activate the NLRP3 inflammasome in LPS-primed human bronchial epithelial cells (HBECs). RT-PCR and Western Blot showed that curdlan upregulate the mRNA as well as intracellular protein expression of NLRP3 and IL-1β in HBECs, along with the activity of caspase-1, and the level of mature IL-1β in cell supernatants was higher by ELISA detection. Further studies demonstrated that the activation of NLRP3 inflammasome could be attenuated by NAC, an inhibitor of ROS. Thus, it indicated curdlan activate NLRP3 inflammasome through a pathway requiring ROS production in HBECs. These findings may provide a new therapeutic target, NLRP3 inflammasome, in invasive pulmonary fungal infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.