Abstract

Metal contacts form one of the main limitations for the introduction of 2D materials in next-generation scaled devices. Through ab-initio simulation techniques, we shed light on the fundamental physics and screen several 2D and 3D top and side contact metals. Our findings highlight that a low semiconducting-metal contact resistance can be achieved. By selecting an appropriate 2D metal, we demonstrate both ohmic or small Schottky barrier top and side contacts. This leads to a contact resistance below 100 Ωμm and good device drive performance with currents in ON state up to 1400 μA/μm, i.e., reduced by a mere 25% compared to a reference with perfect ohmic contacts, provided a sufficiently high doping concentration of 1.8×1013 cm−2 is used. Additionally, we show that this doping concentration can be achieved through electrostatic doping with a gate. Finally, we perform a screening of possible 2D–3D top contacts. Finding an ohmic 2D–3D contact without a Schottky barrier has proven difficult, but it is shown that for the case of intermediate interaction strength and a limited Schottky barrier, contact resistances below 100 Ωμm can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.