Abstract

In recent years, climate change has occurred on a global scale, causing frequent flooding in many regions. In response to this situation, watershed-wide flood management is attracting attention around the world as a promising approach. Under these situations, Japan has also made a policy shift to watershed-based flood management, which aims to manage floods and control runoff in the entire watershed. For this management, it is essential to obtain areal hydraulic information, especially flow information, from each location in the watershed. To measure river flow, it is necessary to measure water level and velocity. While it is becoming possible to make area-based observations of water levels using simple methods, various attempts have been made to measure the velocity, but continuous data cannot be obtained using simple methods. Low-cost flow velocity meters would facilitate the simultaneous and continuous accumulation of data at multiple points and enable the acquisition of areal flow information for watersheds, which is important for watershed-based flood management. This study aims to develop an inexpensive, simple velocity meter that can be used to make areal measurements within watersheds, and to make this velocity meter usable by residents, thereby contributing to citizen science. Therefore, experimental studies were conducted on a method of measuring flow velocity based on the simple physical phenomenon of rising water surface elevations due to increased pressure at the stagnation point. First, we placed the cylinders in the river or waterway, observed the afflux, and compared the velocities calculated using Bernoulli’s theorem with the velocities at the experimental site. By multiplying the calculated flow velocity by 0.9, the average flow velocity was found to be obtained. Then, by using a large pitot tube with a hole diameter of about 5 mm, the rise in water level in the pitot tube was measured using a pressure-type water level meter, and the flow velocity was calculated using the pitot tube theory and compared with the flow velocity at the location of the hole at the experimental site. By multiplying the calculated velocity by 1.04, the velocity at the location of the hole can be obtained. In addition, the same experiment was conducted using a pitot tube with a slit. The slit tube was placed vertically with the slit facing upstream. Measurements were taken in the same method as for the pitot tube velocity meter and compared to the velocity at that point. By multiplying the calculated flow velocity by 0.99, the average flow velocity at that location can be obtained. These results indicate that a flow velocity measurement method utilizing stagnation points can lead to the development of inexpensive velocity meters. Because of the simplicity of this meter, there is a possibility that citizens can participate in the observation to obtain information on the flow velocity during floods and areal information within a watershed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.