Abstract

This work describes the performance of cytochrome c/nickel oxide nanoparticles/glassy carbon electrode, prepared by the electrochemical deposition of the nickel oxide nanoparticles (NiO NPs) on the glassy carbon (GC) electrode surface and the cytochrome c immobilization on the nickel oxide nanoparticle surfaces. An extensive sample examination with the help of the SEM and AFM presented the existence of different geometrical shapes of the nickel oxide particles. These geometrical structures could lead to the better immobilization of proteins on their surfaces. The resulting electrode displayed an excellent behavior for the redox of the cytochrome c. Also, the resulting heme protein exhibited a direct electrical contact with the electrode because of the structural alignment of the heme protein on the nanometer-scale nickel oxide surfaces. This method could be suitable for applications to nanofabricated devices. In the end, it was concluded that the cytochrome c could be tethered to the nanometer-scale nickel oxide surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.