Abstract
The full-potential linearized-augmented plane wave calculations based on density functional theory are performed to study the structural, electronic, optical and thermodynamic properties of scandium chalcogenides ScX (X = S, Se, Te) and their ternary alloys at equilibrium as well as under pressure. The revised Perdew–Burke–Ernzerhof generalized gradient approximation (GGA) is used to calculate the structural properties. The electronic and optical properties are calculated employing the GGA and the modified Becke–Johnson (mBJ) approaches. Moreover, the calculated lattice parameters agree well with the experiment results. The structure NaCl-type (B1) of the scandium chalcogenides undergoes under pressure a structural phase transition to CsCl-type (B2) and ZnS-type (B3). The binary and ternary alloys indicate a metallic behavior using GGA and mBJ scheme. The interband contribution to the optical properties is investigated by calculating the dielectric parameters e1(ω), e2(ω) and the index of refraction n(ω). A quasi-harmonic Debye model is applied to calculate the thermal properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.