Abstract

An n-body PdCu potential is constructed under the framework of the embedded-atom method and is realistic to reproduce phase stability of PdCu phases. Based on this PdCu potential, two interface models with the Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships are established to reveal the kinetics and thermodynamics of the BCC-FCC phase transition through molecular dynamics simulation. It is found that the BCC → FCC phase transition should include the stages of nucleation, growth, and adjustment, and that the slip of edge dislocation of 1/6aBCC[01¯1] on (011)BCC planes fundamentally brings about the nucleation of the FCC phase. Simulations also reveal that the lower energy difference between interface energy and surface energy could serve as the driving force of the nucleation of the FCC phase and intrinsically bring about the BCC → FCC phase transition in the interface with the NW orientation. The different behaviors of the BCC-FCC interface models with the NW and KS relationships are discussed in terms of kinetics and thermodynamics, which could provide a deep understanding of the BCC-FCC phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.