Abstract

It is shown how the accuracy of fluid models of charged particles in gases can be improved significantly by direct substitution of swarm transport coefficient data, rather than cross sections, into the average collision terms. This direct substitution method emerges in a natural way for fluid formulations in which the role of the mean energy is transparent, whatever the mass of the charged particles in equation (ions or electrons), and requires no further approximations. The procedure is illustrated by numerical examples for electrons, including the operational window of E/N for an idealized Franck-Hertz experiment. Using the same fluid formulation, we develop an aliasing method to estimate otherwise unknown mobility data for one type of particle, from known mobility data for another type of particle. The method is illustrated for muons in hydrogen, using tabulated data for protons in the same gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.